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Several direct numerical simulations have been performed and analyzed to study 
various aspects of the early development of mixing layers. Included are (1) the 
phase jitter of the large-scale eddies, which was studied using a two-dimensional 
spatially-evolving mixing layer simulation; (2) the response of a time-developing 
mixing layer to various spanwise disturbances; and (3) the sound radiation from a 
two-dimensional compressible time-developing mixing layer. 

1. Phase decorrelation in a spatially-developing mixing layer 

Since the realization that spanwise coherent structures (rolls) dominate the dy- 
namics of free shear flows, much effort has been focused on the control of these 
rolls in an effort to manipulate shear layers (Ho & Huerre 1984). When low-level 
periodic excitation is applied to force a mixing layer, the vortex formation becomes 
phase-locked with the forcing signal. However, experiments by Zohar et al. (1988) 
show that a short distance from the splitter-plate trailing-edge, the phase jitter in- 
creases abruptly indicating the loss of phase correlation. To achieve better control 
of the mixing layer it is important to understand the cause of this phase jitter. 

The phase decorrelation of the spanwise rolls was studied using a 2-D numer- 
ical code written for spatially-developing free shear flows. The code is based on 
a spectral method in the vertical direction (which extends to infinity) and high- 
order compact finite differencing in the streamwise direction. The advantage of 
numerical simulations over experiments is that some possible causes of the phase 
decorrelation, such as 3-D effects or small-scale transition, can be isolated. A sim- 
ulation was performed at a Reynolds number of 100, with 1% forcing of the inlet 
vertical velocity at a frequency of 0.18. (The length and velocity scales are the 
initial vorticity thickness and free stream velocity difference.) The velocity ratio is 
R = (UI - U2)/(U1 + U2) = 213. As documented elsewhere, the inflow and outflow 
boundary conditions lead to feedback from the latter to the former through the 
pressure. This has the net effect of introducing a small amount of noise into the 
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FIGURE 1. Standard deviation of the difference between successive zero crossing 
(a) as a function of down-stream distance. Current results, - , * Experiments of 
Zohar et al., A , forced, o natural. 

system at the inflow boundary. We believe the results should be independent of the 
origin of the noise, although in the present case the noise is not random. 

The numerical results quantitatively confirm the experimental data, as shown in 
figure 1. The standard deviation of the difference between successive zero crossings 
of the v-velocity is plotted as a function of the downstream distance. The phase 
jitter of the passing coherent rolls increases sharply around the first vortex merg- 
ing. Therefore, the phase jitter is primarily a 2-D phenomenon, and neither phase 
instability nor small-scale transition is the cause of it. The frequency spectrum 
of the velocity fluctuations, shown in figure 2, indicates that the contamination of 
the subharmonic mode by background noise is responsible for the loss of the phase 
information. The subharmonic mode is amplified as an unstable mode from the 
noise via energy transfer from the fundamental. Consequently, the resulting paired 
rolls are not phase-locked with the forcing signal. 

2. Three-dimensional temporally-evolving mixing layers 
Plan-view shadowgraph pictures taken by Konrad (1976) clearly reveal the exis- 

tence of periodically distributed streamwise streaks, positioned in the braid region 
between the large coherent spanwise rollers of their mixing layer. These streaks 
are a result of counterrotating pairs of streamwise vortices (Bernal & Roshko 1986) 

Widnall (1982) have used linear stability analysis to show that the most amplified 
spanwise wavelength is about 2/3 of the streamwise wavelength of the large coherent 
rollers for a class of Stuart (1967) vortices with a vorticity distribution similar to 
that of experimental mixing layers. They also found that the growth-rate curve is 
fairly flat around this most amplified wavelength. This wavelength ratio is in good 

I that arise from a secondary instability of the plane mixing layer. Pierrehumbert & 
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FIGURE 2. Spectrum of the cross-stream velocity ( v )  at z/6 = 140 and y = 0. 
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agreement with that of experimentally observed structures and was also found to 
remain constant after the merging or pairing of the coherent rolls (Huang & Ho 
1988). The mechanism by which this ratio remains constant during a pairing (i.e., 
how the spacing of the streamwise vortices doubles) is not understood. 

A three-dimensional temporally-evolving shear layer code was used to study the 
development of mixing layers in the presence of spanwise disturbances. The tern- 
poral nature of the simulation permits the direct use of spectral methods in the 
periodic streamwise and spanwise directions. The cross-stream direction is mapped 
onto a uniform grid in a finite domain using a cotangent mapping and the spatial 
dependence of each dependent variable in this direction is represented by a Fourier 
series in the mapped domain (see Cain, Fereiger & Reynolds 1984). 

In order to estimate the most unstable spanwise wavelength of a mixing layer 
during both roll up and pairing the code was modified to ensure that the three- 
dimensional disturbances remained small (and thus could be treated as linear). 
This rescaling of the disturbance in no way affects the development of the two- 
dimensional base flow. The spanwise periodic boundary condition requires that all 
spanwise disturbances must have an integral number of wavelengths in the corn- 
putational domain. In order to permit a “natural” wavelength selection it is thus 
necessary to use a very large spanwise computational domain compared to the ex- 
pected most unstable spanwise wavelength. This will ensure that the flow can 
select the wavelength of its choice rather than one imposed by the computational 
box. Each spanwise wavenumber is initialized with a small disturbance and the 
growth (or decay) rate of the disturbance in each wavenumber is recorded as the 
two-dimensional mixing layer undergoes first a roll up and then a pairing. The 
initial streamwise disturbances used were eigenfunctions determined from inviscid 
linear theory (Rayleigh eigenfunctions). 

Plots of the growth rate of each spanwise wavenumber at two times in the mixing 
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FIGURE 3. 
at two times: o , roll up ( t  = 166/U) and A , pairing (t = 25.56/V). 

Growth rates (G) of Fourier modes of with spanwise wave-length A, 

layer development are shown in figure 3. At early time, when the layer has rolled up 
but not yet paired, the most unstable wavelength is about 60% of the streamwise 
wavelength. When vortex pairing occurs, the amplified band of streamwise vortex 
disturbances shifts toward longer wavelengths, as can be seen in figure 3. The most 
amplified wavelength is then about twice the wavelength before pairing. Thus the 
most amplified wavelength of the streamwise vortices remains proportional to the 
local wavelength of the coherent structures, in agreement with the experimental 
observations. 

This analysis suggests a mechanism by which the experimentally observed span- 
wise scale change could occur at a pairing; that is, the longer wavelength modes 
begin to grow faster than the mode at the originally dominant scale. However, 
there are two major shortcomings of the analysis. The first is that it is linear, and 
there may be important non-linear effects. The second is that only local (in time) 
growth rates are considered, whereas the observed strength of a given Fourier mode 
depends on the time-integral of the growth. 

To address these difficulties, a fully non-linear computation was performed. This 
simulation was done using an improved numerical method based on a hyperbolic 
tangent mapping of the cross-stream (y) coordinate. The simulation was initial- 
ized with an array of weak streamwise vortices corresponding to the most unstable 
spanwise wavelength (60% of the streamwise wavelength). The subharmonic in the 
spanwise direction was also excited but at half the amplitude. It is this subhar- 
monic which should grow to become dominant if there is to be a scale change after 
a pairing. Energies in four of the Fourier modes in the simulation are shown as a 
function of time in figure 4. The fundamental and subharmonic of the main Kelvin- 
Helmholtz roll up ( I C ,  = 0) are shown indicating the time at which roll up (when 
the fundamental is maximum) and pairing (when the subharmonic is maximum) 
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FIGURE 4. Evolution of the energy in four Fourier modes: A , fundamental Kelvin- 
Helmholtz mode, o subharmonic Kelvin-Helmholtz mode, x fundamental streamwise 
vortex mode, t , subharmonic streamwise vortex mode. 

occur. Note that the subharmonic of the mode representing the streamwise vortices 
( I C ,  = 0), does not grow or become dominant after the pairing. Thus there is no indi- 
cation of a spanwise scale change in this simulation. The reason for the discrepancy 
between the fully non-linear simulation and both the experimental observations and 
linear analysis is not known. This is a problem for future research. 

Another form of spanwise disturbance that was studied consists of a spanwise 
variation of the vorticity thickness. Such flows could be difficult to realize in the 
laboratory and numerical simulation provides a good means to study their behavior. 

Several simulations were made using an initially sinusoidal spanwise variation 
(one period in the computational domain) of vorticity thickness with a maximum 
to minimum thickness ratio of two. As before, initial streamwise disturbances were 
determined from inviscid stability theory. The spanwise extent of the computa- 
tional box was five times the wavelength of the most unstable mode in the initially 
thin region of the layer. When forced by the eigenfunction associated with the 
most unstable frequency of the layer at its thinnest point, roll up was observed to 
occur only in this region. Further simulations were made with the addition of an 
eigenfunction at the subharmonic frequency at various phases relative to the funda- 
mental. In these cases the layer rolled up and paired at the thin location while a roll 
up occurred at the thick location, ultimately leading to one spanwise vortex (figure 
5 ) .  Figure 6 shows the behavior at an earlier time. At the thin location (figure Sa) 
two well-defined rollers have developed in a manner similar to a two-dimensional 
layer with the same streamwise disturbances. At the thick location (figure 6b) a 
weak roll up of two vortices has started. Intermediate locations show intermediate 
behavior (figure 6c). Slightly later the pairing at the thin location is nearing com- 
pletion as it does in the two-dimensional case. At  the thick location the forward 
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FIGURE 5. Vorticity distribution in z-y planes at a late time, t = 19.96/U. (a) 
spanwise vorticity, w,, at the initially thin location (peak level -1.2); (b) spanwise 
vorticity, w,, at the initially thick location (peak level -1.9); (c) spanwise vorticity, 
wz , at location half way between (a) and (b) (peak level -1.8); (d) streamwise vor- 
ticity, w,, at same location as (c) (levels ranging from -0.7 to 0.4, dashed contours 
correspond to negative contour levels). 

vortex lump has been almost completely absorbed by the rear vortex lump as the 
full roll up of figure 5b is being approached (this stage bears some resemblance 
to the two-dimensional “shredding” behavior observed when the fundamental and 
subharmonic disturbance have a relative phase that inhibits pairing). Intermediate 
locations are again intermediate in behavior. 

During this process the blending of rollers at different locations is associated 
with the development of streamwise vorticity. Initially there is no streamwise vor- 
ticity anywhere in the domain and by symmetry none ever forms at the thinnest 
and thickest spanwise sections of the layer. In the intermediate regions, however, 
significant streamwise vorticity does develop. Figure 6d illustrates its form at a 
section half way between the thickest and thinnest locations. From this section the 
streamwise vorticity structure appears to resemble the streamwise vortices typical 
of the secondary instability described earlier. However, a three-dimensional surface 
plot shows that, rather than roughly axisymmetric streamwise vortices, this section 
represents a cut through a slab-like structure of streamwise vorticity that extends 
the entire width from the thinnest to thickest point of the layer. As the roll up 
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FIGURE 6. Vorticity distribution in z-y planes at an early time, t = 12.06/U. (a) 
spanwise vorticity, w,, at the initially thin location (peak level -1.4); (b) spanwise 
vorticity, w,, at the initially thick location (peak level -1.2); (c) spanwise vorticity, 
wz 9 at location half way between (a) and (b) (peak level -1.5); (d) streamwise 
vorticity, w,, at same location as (c) (levels ranging from -0.45 to 0.6, dashed 
contours correspond to negative contour levels). 

progresses at the thick location the magnitude of the streamwise vorticity increases 
(up to 311.6) but ultimately, when the layer approaches one large two-dimensional 
roller it decays to the moderate levels observed in figure 5d. 

Future plans include the study of the more interesting case where the ratio of the 
vorticity thickness of the thick to the thin region is not an integer number. 

3. Acoustic radiation from vortex roll up and pairing 
In low Mach number shear layers, the energy radiated by sound is a small portion 

of that generated by turbulence production. At higher Mach numbers the sound 
radiation can be a major energy sink. It was suggested by Laufer (1974) that 
the merging of the spanwise rolls was the dominant sound generation mechanism; 
however, the detailed process has never been clarified. A compressible temporally- 
developing shear layer code was used to study this problem. The code used high- 
order accurate compact finite differencing. The calculation domain contained the 
entire region with significant pressure fluctuations, from the near-field of shear layer 
vortices to the far-field region. The process of noise generation was identified by 
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FIGURE 7. Contours of vorticity and dilatation fields. Snapshots from eight 
equally spaced times are arranged from left to right. The vorticity contours (shown 
only in a part of the domain) provide a visualization of the flow generating the 
acoustic waves radiating to the far-field. The plotted dilatation contours are chosen 
to show the waves in the far-field. Waves generated by the roll up and pairing are 
preceded by an initial transient. 
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FIGURE 8. Contours of vorticity and dilatation fields. Continuation of the time 
series in the figures on left. Sound waves generated by the vortex unsteadiness after 
a vortex merger are shown. Almost two cycles of this unsteadiness are shown. 
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following the time evolution of vorticity, dilatation and pressure fields during the 
roll up and pairing events. The roll up process generated a compression wave, while 
the pairing event generated a compression and an expansion wave. The acoustic 
power emitted during a pairing was 5-6 times stronger than the emission from a roll 
up of the fundamental disturbance. 

Examples of the time evolution of the vorticity and dilatation fields are shown in 
figures 7 and 8, respectively. For this case, the velocity ratio 2 is 0.2 and Tz = 2'1, 

where the subscripts refer to the high and low speed streams. The two streams 
have Mach numbers of MI = 1.0 and Mz = 0.2 which corresponds to a convective 
Mach number (as defined by Papamoschou and Roshko 1986) of M, = 0.4. The 
calculations are performed in a frame of reference moving with 3 of 0.4. Note that 
this reference speed is different from the propagation speed of the vortices, 3 of 
0.6. It was verified that the reference speed had no effect on the results described 
here. The panels in these figures correspond to 8 different snapshots of the flow 
as it evolves. The roll up and pairing is evident from the vorticity contours. The 
dilatation pattern associated with each vortex is a quadrupole, and the acoustic 
waves radiate during the roll up and vortex merging stage. The vortex merging 
process generates first a compression wave while the Reynolds stresses extract work 
from the mean flow. Later in time the Reynolds stress is negative in the shear layer, 
indicating that energy is being transferred from the shear region back to the mean 
flow. At the same time, sound is radiated to the surroundings in the form of an 
expansion wave. 

In the far-field the density, pressure and velocity fluctuations were computed. 
The acoustic energy flux radiated to the far-field was also monitored. It was found 
that the far-field fluctuations satisfied plane wave acoustic relations exceedingly 
well. The fluctuations in the near-field (pressure and velocity) were found to decay 
exponentially away from the shear layer. This near-field region was found to scale 
with the hydrodynamic instability wavelength. 

In the future the Mach number dependence of the radiated acoustic flux will be 
studied, and acoustic radiation from spatially-evolving mixing layers will be studied. 
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